New Fluorinated Dithienyl diketopyrrolopyrrole Monomers and Polymers for Organic Electronics

Thomas Bura, ‡ Serge Beaupré, † Olzhas A. Ibraikulov, ‡ Marc-André Légaré, § Jesse Quinn, ‡ Patrick Léveque, ‡ Thomas Heiser, ‡ Yuning Li, ‡ Nicolas Leclerc, † and Mario Leclerc†‡*

† Canada Research Chair on Electroactive and Photoactive Polymers, Department of Chemistry, Université Laval, Quebec City, Quebec G1V 0A6, Canada
‡ Laboratoire ICube, DESSP, Université de Strasbourg, CNRS, 23 rue du Loess, Strasbourg 67037, France
§ Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg, Am Hubland, Würzburg 97074, Germany

ABSTRACT: Diketopyrrolopyrrole (DPP) derivatives are among the most efficient materials studied for both polymer solar cells (PSCs) and organic field-effect transistors (OFETs) applications. We report here the synthesis of new fluorinated dithienyl diketopyrrolopyrrole (fDT-DPP) monomers suitable for direct heteroarylation polymerization. fDT-DPP copolymers were then prepared to probe the effect of the fluorination. It was found that they feature deeper HOMO energy levels and smaller bandgaps than their non-fluorinated analogues. Moreover, some fDT-DPP copolymers show ambipolar behavior when tested in OFETs. For example, P2 shows hole mobility up to 0.8 cm² V⁻¹ s⁻¹ and electron mobility up to 0.5 cm² V⁻¹ s⁻¹. Inverted PSCs with power conversion efficiency (PCE) up to 7.5% were also obtained for P5. These results reported here (OFETs and PSCs) confirm that the fluorination of dithienyl-DPP moieties improves the performance of organic electronics devices. This study is also evidencing the strength of the direct heteroarylation polymerization and fDT-DPP as a new class of conjugated polymers.

1. INTRODUCTION

In the past few years, organic solar cells (OSCs) and organic field-effect transistors (OFETs) based on π-conjugated polymers have stimulated broad interest from academic and industrial laboratories due to the possibility of creating efficient, lightweight, and flexible devices using inexpensive and environmentally friendly solution-based printing techniques.¹–⁶ Tuning of the physical and electro-optical properties of conjugated polymers through chemical modification of their backbone has led to a wide array of promising materials for organic electronics applications. Indeed, with polymer solar cells (PSCs) exhibiting power conversion efficiency (PCE) exceeding 10%,⁷–¹⁰ OFETs with hole mobility up to 20 cm² V⁻¹ s⁻¹,¹¹ and electron mobility as high as 7.0 cm² V⁻¹ s⁻¹,¹² conjugated polymers now show performance suitable for commercial applications. Among all the new electroactive and photoactive materials developed over the past 20 years, 2,5-dihydroxy-1,4-dione (DPP)-based polymers have been found especially valuable since they deliver high performances in both PSCs and OFETs. For example, PDPPTT, a copolymer based on dithienyl-DPP and thiene[3,2-b]thiophene (TT), showed PCE up to 9.4%¹³ and hole mobility up to 10.5 cm² V⁻¹ s⁻¹.¹⁴ Since the first report on the synthesis of 3,6-diphenyl-DPP by Farnum et al. in 1974,¹⁵ the synthesis and the modulation of the electro-optical properties of DPP copolymers have been extensively studied and reviewed.¹⁶–²⁷ The flanking aromatic substituents (five- or six-membered-fused or unfused heterocyclic rings) strongly modulate the electro-optical properties. Flanking thiophenes, a five-membered ring, notably have minimal steric effects on the DPP core and lead to coplanar dithienyl-DPP building blocks that are widely used in conjugated polymers. Recently, fluorination of conjugated backbone of D–A copolymers has proven to be effective to enhance the properties of PSC and OFETs.²⁸ The strong electron negativity of fluorine effectively lowers both the HOMO and LUMO energy levels of the fluorinated copolymers without perturbing the planarity of the backbone, thanks to its small van der Waals radius (r = 0.135 nm). In addition, changes in crystallinity, internal polarization, and morphology of the active layer have also been attributed to fluorination. Up to now, the

Received: June 8, 2017
Revised: September 6, 2017

DOI: 10.1021/acs.macromol.7b01198
Macromolecules XXXX, XXX, XXX–XXX
best-performing semiconducting polymers incorporate fluorine atoms in their chemical structure. It is believed that fDT-DPP is capable to induce ambipolarity in OFETs, which is specifically attractive for the fabrication of single-semiconductor complementary metal-oxide-semiconductor (CMOS) inverters and light-emitting devices. A single organic semiconductor would facilitate the fabrication of CMOS inverters, and the devices are much more stable in comparison to the semiconductor blends and/or double-layer semiconductor films, which have demonstrated difficulties related to nanomorphological formation in the blended films or coalescing of the bilayers. Ambipolar polymers based on electron acceptors of naphthalenediimide (NDI), benzodifurandione, isoindigo (IID), and diketopyrrolopyrrole (DPP) or its derivatives have been reported; however, there are still only a small number of polymeric semiconductors that display ambipolar characteristics with high and balanced hole and electron mobilities.

Along these lines, we report for the first time an efficient and reliable procedure for the synthesis of pure 4-fluoro-2-thiophenecarbonitrile, a pivotal component for the synthesis of fluorinated dithienodiketopyrrolopyrrole (fDT-DPP) (Scheme 1). Unlike the work reported by Jiang et al. on fluorodiphenyl-DPP (fDP-DPP), we found that the synthesis of fDT-DPP proceeded smoothly using the well-established succinate-based procedure. The fDT-DPP-based copolymers prepared by direct (hetero)arylation polymerization exhibit broad and red-shifted absorption in the UV−vis−NIR region with deeper HOMO energy levels compared to their non-fluorinated analogues. When tested in OFETs, a fDT-DPP copolymer shows an ambipolar behavior with both high hole and electron mobilities whereas other copolymers demonstrated highly interesting photovoltaic properties. Based on these results, fDT-DPP is a promising building block for organic electronics.

2. EXPERIMENTAL SECTION

2.1. Methods. 1H, 13C, and 19F NMR spectra were recorded on a Varian AS400 or Agilent DD2 500 MHz apparatus in deuterated solvents. Chemical shifts were reported as δ values (ppm) relative to the residual protic solvent. The number-average (M_n) and weight-average (M_w) molecular weights were determined by size exclusion chromatography (SEC) using a Malvern HT-GPC equipped with an RI detector. The flow rate was fixed at 0.75 mL/min using 1,2,4-trichlorobenzene (TCB) (with 0.0125% BHT w/v) as the eluent. The temperature of the system was set to 140 °C. All the samples were prepared at concentrations of nominally 0.50 mg/mL in TCB.
sample vials were held at 140 °C with stirring for 1 h for complete dissolution. The calibration method used to generate the reported data was the classical polystyrene method using polystyrene standards which were dissolved in TCB. UV-vis absorption spectra were taken using a Thermo Scientific Genesys 105 spectrophotometer using 1 cm path-length quartz cells. For solid-state measurements, polymer solution was spin-cast on glass plates. Optical bandgaps were calculated from the onset of the absorption band. Cyclic voltammetry was recorded on a Solartron 1287 potentiostat using platinum wires as working electrode and counter electrode at a scan rate of 50 mV/s. The reference electrode was Ag/Ag+ (0.01 M AgNO3 in acetonitrile), and the electrolyte was a solution of 0.1 M tetrabutylammonium hexafluorophosphate (Bu4NPF6) in dry acetonitrile. In these conditions, the oxidation potential of ferrocene was 0.09 V versus Ag/Ag+, whereas the oxidation potential of ferrocene was 0.41 V versus saturated calomel electrode (SCE). The HOMO and LUMO energy levels were determined from the oxidation and reduction onsets (where the current differs from the baseline) assuming that SCE electrode is -4.71 eV from vacuum, as reported in the literature.65 Thermogravimetric analysis (TGA) measurements were carried out with a Mettler Toledo TGA SDTA 851e apparatus at a heating rate of 10 °C/min under a nitrogen atmosphere. The temperature of degradation (Td) corresponds to a 5% weight loss. Differential scanning calorimetry (DSC) analyses were performed on a PerkinElmer DSC instrument calibrated with ultrapure indium at a scanning rate of 10 °C/min under a nitrogen flow. The WAXS (powder) measurements were done with a Kratkyflex 760 generator (40 kV, 40 mA), a goniometer, and a two-dimensional Hi-Star detector. A sealed tube emitting at 1.5418 Å (copper Kα) nickel-filtered was used as the source. GADDS software was used to control and to perform analysis of all experiments.

2.2. Fabrication and Testing of OFETs. Organic field effect transistors (OFETs) were fabricated on a heavily n+2-doped Si/SiO2 substrate with bottom-gate bottom-contact configuration (BGBC). The thermal grown SiO2 (∼300 nm) was used as the gate dielectric and the conductive Si layer functioned as the gate. The gold source/drain contact pairs with a channel length of 30 μm and the conductive Si layer as the drain were patterned by photolithography and dry etching. The gold source/drain contact pairs were deposited by thermal evaporation MoO3 (7 nm)/Ag (120 nm) layer. SCLC configuration (BGBC). The reaction mixture was allowed to warm to room temperature and reacted overnight. The reaction was quenched with a saturated solution of NH4Cl and extracted three times with diethyl ether. The combined organic phases were washed with water and brine, dried over MgSO4 and concentrated under vacuum. Purification was achieved by vacuum distillation (bp 110–115 °C at 0.35 mmHg), affording the desired compound as colorless oil (Y = 85%).1H NMR 500 MHz (CDCl3) δ (ppm): 7.45 (d, J = 4.8 Hz, 1H), 7.10 (d, J = 4.8 Hz, 1H), 1.34–1.25 (ar. sh, 12H), 0.91–0.86 (m, 5H), 0.38 (s, 6H).13C NMR 126 MHz (CDCl3) δ (ppm): 133.9, 132.6, 130.8, 117.4, 33.5, 32.1, 29.4, 23.8, 22.8, 15.5, 14.3, 11.6 nF cm−1). The reaction mixture was left to react for 25 min at ∼80 °C. After this time, n-octyl-4,7-dimethylthiophene (13.5 mL, 56.05 mmol, 1.1 eq.) was added, and the reaction mixture was warmed to room temperature (bp 110–115 °C at 0.35 mmHg), affording the desired compound as colorless oil (Y = 85%).1H NMR 500 MHz (CDCl3) δ (ppm): 7.45 (d, J = 4.8 Hz, 1H), 7.10 (d, J = 4.8 Hz, 1H), 1.34–1.25 (m, 12H), 0.91–0.86 (m, 5H), 0.38 (s, 6H).13C NMR 126 MHz (CDCl3) δ (ppm): 133.9, 132.6, 130.8, 117.4, 33.5, 32.1, 29.4, 23.8, 22.8, 15.5, 14.3, −23.3.2.6. Synthesis of 3-Fluoro-2-(dimethyloctylsilyl)thiophene (3). 2.6.2. Synthesis of 3-Fluoro-2-(dimethyloctylsilyl)thiophene (3).

2.3. Fabrication and Testing of Hole-Only Space Charge Limited Current Devices. ITO-coated glass was utilized as a substrate. Substrates were cleaned consecutively in ultrasonics baths at 45 °C for 15 min using soapsuds, acetone, and isopropanol followed by 15 min UV-ozone treatment. A thin poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer was spin-coated onto pre-cleaned ITO and used as a bottom electrode. Polymer and polymeric fullerene layers were spin-coated from hot solutions (∼110 °C) onto preheated substrates (∼110 °C). Devices were left overnight under high vacuum (∼5 × 10−7 mbar) and were completed by thermally evaporated MoO3 (0.7 nm)/Ag (120 nm) layer. SCLC diode (surface area: 1 mm2) current–voltage characteristics were measured using a Keithley 4200 semiconductor characterization system.

2.4. Fabrication and Testing of Polymer Solar Cells. ITO-coated glass was utilized as a substrate. A ZnO layer (∼20–25 nm) was spin-coated from ZnO nanoparticles solution (Nanograde N10) onto pre-cleaned ITO and thermally annealed at 100 °C for 10 min and used as an electron extracting electrode. Active layers were elaborated from 4,7-bis(3,6-di-DCB and 4,7-DCB/additive (DIO/DPE) solutions using blends of polyelectrolytes and PC71BM as an electron acceptor material at various weight ratios. The concentrations of solutions were 8 mg/mL with respect to polymer content. Top electrode consisting of MoO3 (7 nm)/Ag (120 nm) was thermally evaporated under ∼5 × 10−7 mbar vacuum. Four diodes with a 12 mm2 active area were elaborated per substrate. All characterization was done in nitrogen atmosphere under dark and simulated AM1.5G standard irradiation (100 mW/cm2, Lot Oriel Sun 3000 solar simulator).

2.5. Materials. 2,3-Dibromothiophene (1) and N-fluorobenzene-sulfonamide (NFSI) were purchased from Chemservice. NFSI was recrystallized in diethyl ether prior to use. n-Octyl-4,7-dimethylthiophene was purchased from Gelest Inc. P1.65 2,7-dibromo-9-(heptadecan-9-yl)-9H-carbazole (M1),67 3,6-bis(thiophen-2-yl)-2,5-bis(decyl)-pyrrolo[3,4-c]pyrrole-1,4-dione (M2),68 3,6-bis(thiophen-2-yl)-2,5-bis(dodecyl)pyrrolo[3,4-c]pyrrole-1,4-dione (M3),68,69 3,6-bis(5-bromo-thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-dione (M4),69 and tris(2-cycloheptyloxy)phenylphosphine (Bura-Phos)70 were synthesized according to procedures reported in the literature.

DOI: 10.1021/acs.macromol.7b01198
(CDCl₃) δ (ppm): 163.7 (d, J = 25.5 Hz), 129.8 (d, J = 8.6 Hz), 118.2 (d, J = 31.3 Hz), 114.4 (d, J = 30.9 Hz), 33.5, 32.1, 29.4, 23, 22.8, 16.2, 14.3, −2.1.

2.6.3. Synthesis of 4-Fluoro-5-(dimethylcytisyl)-2-thiophencarbaldehyde (4). Compound 3 (1.45 g, 5.31 mmol, 1 eq.) was placed in a dried round-bottom flask with a magnetic stirrer and purged on a Schlenk line. Anhydrous THF (20 mL) was added, and the solution was cooled to −78 °C. Then, a solution of n-Buli (2.5 M in hexanes, 2.35 mL, 5.84 mmol, 1.1 eq.) was added dropwise, and the mixture was reacted for 20 min at −78 °C. Then, anhydrous DMF (0.9 mL, 10.6 mmol, 2 eq.) was added, and the reaction mixture was allowed to warm to room temperature and was left to react overnight. The reaction was quenched with a saturated solution of NH₄Cl and extracted three times with diethyl ether. The combined organic phases were washed with water and brine, dried over MgSO₄, and concentrated under vacuum. Purification was achieved by column chromatography (silica gel; eluent: chloroform/hexanes 65:35) affording the desired compound as a purple solid (Y = 40%).

2.6.4. Synthesis of 4-Fluoro-5-(dimethylcytisyl)-2-thiophenecarbaldehyde (5). Compound 4 (0.51 g, 1.51 mmol, 1 eq.) was placed in a round-bottom flask with a magnetic stirrer and dissolved in THF (2 mL). Then, a solution of a 2 M HCl (1.1 mL, 1.1 eq.) was added, and the mixture was cooled at 0 °C. TBAF·3H₂O (1 g, 3.2 mmol, 1.6 eq.) was added, and the reaction mixture was allowed to warm to room temperature and monitored by TLC (eluent: pentane/diethyl ether 90/10). At the end of reaction (typically 1 h) the crude mixture (no work-up) was poured on silica gel (eluent: pentane/diethyl ether 90/10) to afford the titled compound as white solid (Y = 80%).

From the reaction mixture, the crude mixture was filtered over a silica gel column (eluent: pentane/diethyl ether 90/10) and the volatiles were removed under reduced pressure. After washing with methanol, the polymer was recovered by filtration using a 0.45 μm nylon filter and purified according to the procedure described for M₅ using 1-bromododecane instead of 1-bromodecane affording the desired polymer as a purple solid (Y = 43%).

2.6.5. Synthesis of 4-Fluoro-2-thiophenecarbonitrile (0.83 mL, 4.7 mmol, 0.45 eq.) was slowly added through the methyl-2-butanol was rapidly added into the mixture, and diisopropyl carbonitrile (0.56 g, 4.31 mmol, 1 eq.) was placed in a round-bottom flask with a magnetic stirrer and dissolved in THF (2 mL). Then, the reaction mixture was stirred until gelation of the reaction mixture (16 h). The reaction was cooled to 65 °C, and then 1-M, which was placed in a microwave vial with a magnetic stirring bar. The vial was sealed with a cap and then purged with nitrogen to remove the oxygen (3×). Degassed and anhydrous toluene was added (C = 0.2 mol L⁻¹, 0.4 mL), and the microwave vial was heated at 120 °C using a slow temperature ramp. After heating for 16 h, 0.2 mL of degassed and anhydrous toluene was added. Four hours later the reaction was cooled to 65 °C, and then 1 mL of TCB was added. The mixture was poured in methanol/acidified water (10% HCl; 9:1 ratio), and the solid was recovered by filtration using a 0.45 μm nylon filter. The polymer was washed using a Soxhlet apparatus with acetone, hexanes, dichloromethane, and then chloroform. The chloroform fraction was reduced to 5–10 mL and then poured in methanol. The polymer was recovered by filtration over a 0.45 μm nylon filter and dried under vacuum (Y = 73%).
Scheme 2. Synthetic Pathway for Synthesis of 4-Fluoro-2-thiophenecarbonitrile

91%). 1H NMR 500 MHz (TCE at 100 °C) δ (ppm): 9.03, 8.20, 7.87, 7.65, 4.72, 4.24, 2.41, 2.14, 1.94, 1.58, 1.51, 1.39, 1.25, 0.97, 0.88.

2.7.3. Synthesis of P4. M1 (0.131 mmol, 1 eq.), M5 (0.131 mmol, 1 eq.), Pd(OAc)$_2$ (4% mol), tris(2-methoxyphenyl)phosphine (16% mol), Cs$_2$CO$_3$ (3 eq.), and pivalic acid (1 eq.) were put in a microwave vial with a magnetic stirring bar. The vial was sealed with a cap and degassed and anhydrous THF was added ($C = 0.1$ mol L$^{-1}$, 1.3 mL), and the reaction was heated with an oil bath preheated at 100 °C (reaction under pressure) until gelation of the reaction mixture (15 min). The reaction was cooled to 65 °C, and then 1 mL of TCB was added. The mixture was poured in methanol/acidsified water (10% HCl) (9:1), and the solid was recovered by filtration using a 0.45 μm nylon filter. The polymer was washed using a Soxhlet apparatus with acetone, hexanes, and then chlorobenzene. The chlorobenzene fraction was reduced to 5–10 mL and then poured in methanol. The polymer was recovered by filtration over a 0.45 μm nylon filter and dry under vacuum ($Y = 80\%$).

2.7.4. Synthesis of P5. M1 (0.139 mmol, 1 eq.), M5 (0.139 mmol, 1 eq.), Pd(OAc)$_2$ (4% mol), tris(2-cycloheptyloxyphenyl)phosphine (16% mol), Cs$_2$CO$_3$ (3 eq.), and pivalic acid (1 eq.) were put in a microwave vial with a magnetic stirring bar. The vial was sealed with a cap and then purged with nitrogen to remove the oxygen (3x). Degassed and anhydrous THF was added ($C = 0.1$ mol L$^{-1}$, 1.3 mL), and the reaction was heated with an oil bath preheated at 100 °C (reaction under pressure) until gelation of the reaction mixture (15 min). The reaction was cooled to 65 °C, and then 1 mL of TCB was added. The mixture was poured in methanol/acidsified water (10% HCl) (9:1), and the solid was recovered by filtration using a 0.45 μm nylon filter. The polymer was washed using a Soxhlet apparatus with acetone, hexanes, and then chlorobenzene. The chlorobenzene fraction was reduced to 5–10 mL and then poured in methanol. The polymer was recovered by filtration over a 0.45 μm nylon filter and dry under vacuum ($Y = 85\%$).

3. RESULTS AND DISCUSSION

3.1. Justification of the Fluorination Position on the Thiophene Moiety. As recently shown by Jiang et al., despite the similar size of fluorene and hydrogen atoms, the fluorination position on the phenyl group led to undesired torsion of the fluorinated diphenyl-DPP core. While alkylated diphenyl-DPP is known to be twisted and alkylated dithienyl-DPP is coplanar, one can think that the fluorination position on the thiophene ring would also affect the coplanarity of the resulting fluorinated dithienyl-DPP which can be detrimental for the electro-optical properties. We then performed conformation analyses based on density functional theory to gauge the effect of both the amount and the position of fluorine atoms on the molecular structure of dDT-DPP (see Table S1 in Supporting Information). The theoretical calculations revealed that when a fluorine atom is pointing toward the DPP core, the coplanarity is lost (DPP-3-F). On the other hand, the coplanarity of the fluorinated dithienyl-DPP is not affected when the fluorine atom is pointing away from the DPP core (DPP-4-F). Owing to these theoretical data, one can think that the synthesis of 4-fluoro-2-thiophenecarbonitrile (compound 6, Scheme 2) would lead to coplanar fluorinated dithienyl-DPP moiety.

Recently, we have shown that theoretical calculations can also be used to rationalize and predict regioselectivity of the direct heteroarylation polymerization.77,78 We performed a similar study using non-fluorinated DT-DPP moiety as reference to probe the effect of both different patterns on the activation energy (Gibbs free energy) of the C–H bond of the thiophene moiety in a catalytic direct heteroarylation polymerization. As shown in Figure 1, for DPP, a difference in the activation energy ($ΔE_a$) between $H_α$ (24.2 kcal mol$^{-1}$) and $H_β$ (29.0 kcal mol$^{-1}$) of 4.8 kcal mol$^{-1}$ was calculated. Using Arrhenius’s law, it is possible to tentatively estimate a selectivity ratio of the α-position at 120 °C (the temperature of polymerization). For this system, a ratio of about 450/1 favoring $H_α$ can indeed be calculated for the DPP unit. Moreover, a difference in the activation energy ($ΔE_a$) between $H_α$ and $H_β$ for DPP is found to be at 10.3 kcal mol$^{-1}$ (24.2 kcal mol$^{-1}$ vs 34.5 kcal mol$^{-1}$), giving a higher selectivity in favor of $H_α$ (about 530000/1). For DPP-3,4-F, only one C–H bond is available for the concerted metalation–deprotonation (CMD) step in DHAP with an activation energy calculated at 19.4 kcal mol$^{-1}$. This lower activation energy value, compared to the activation energy of $H_α$ of DPP (24.2 kcal mol$^{-1}$), shows the...
effect of electron-withdrawing fluorine atom on the adjacent C–H bond. For DPP-3-F a difference in the activation energy (ΔEa) between Hα (23.5 kcal mol⁻¹) and Hβ (25.5 kcal mol⁻¹) is only of 2.0 kcal mol⁻¹. Here, theoretical calculations show that the electron-withdrawing fluorine atom strongly modifies the activation energy of C–Hβ bond (25.5 kcal mol⁻¹) and has a small influence on the C–Hα (23.5 kcal mol⁻¹). Indeed, while the activation energy of Hα is 23.5 kcal mol⁻¹ for DPP-3-F, the activation energy of Hβ is lowered at 25.5 kcal mol⁻¹ compared to 29 kcal mol⁻¹ for DPP which leads to lower selectivity in favor of Hβ (15/1) compared to 450/1 for DPP. Finally, for DPP-4-F, an activation energy of 19.8 kcal mol⁻¹ for Hα and 30.1 kcal mol⁻¹ for Hβ were calculated. In this case, the position of the fluorine atom on the flanking thiophene influences both Hα and Hβ. Indeed, when compared to DPP, activation energies are lowered (Hα 19.8 vs 24.2 kcal mol⁻¹; Hβ = 30.1 vs 34.5 kcal mol⁻¹). Although the activation energy of Hβ is decreased by 4.4 kcal mol⁻¹ compared to DPP, a selectivity of about 500000/1 in favor of Hα over Hβ was calculated meaning that the polymerization reaction will likely proceed at the α-position and lead to well-defined copolymer. By combining the conformational analyses and the activation energy of each C–H bond, DPP-4-F derivatives would be the most useful fluorinated DPP core to obtain well-defined and coplanar conjugated polymer by DHAP.

3.2. Synthesis of Monomers. On the basis of our previous work on fluorinated poly(3-alkylthiophene)s and fluorinated dithieno[3,2-b:2′,3′-d]thiophene—benzothiadiazole, we synthesized 3-bromo-2-(dimethyloctylsilyl)thiophene (2) from lithiation of 2,3-dibromo thiophene (1) in diethyl ether (at ~80 °C) with n-BuLi followed by treatment with n-octyldimethylchlorosilane (Scheme 2). 3-Bromo-2-(dimethyloctylsilyl)thiophene was purified by vacuum distillation and obtained in 85% yield. Subsequent lithiation of 2 at ~100 °C in THF followed by a fast addition of NFSI via cannula provided 3-fluoro-2-(dimethyloctylsilyl)thiophene (3) in 65% yield. Unlike other fluorothiophene derivatives reported in the literature, which are removed by normal phase chromatography. It is worth noting that freshly recrystallized NFSI, control of the reaction temperature (~100 °C) and the use of TMEDA are mandatory to obtain 3 in a good yield. Lithiation of 3 with n-BuLi followed by quenching of the reaction with N,N-dimethylformamide led to 4-fluoro-3-(dimethyloctylsilyl)-2-thiophencarboxaldehyde (4) in 85% yield. Compound 4 was treated with an excess of tetrabutylammonium fluoride trihydrate (TBAF·3H2O) in a mixture of THF/HCl at room temperature to afford pure 4-fluoro-2-thiophencarboxaldehyde (5) in 85% yield. Treatment of 5 with hydroxylamine hydrochloride in NMP at 145 °C followed by purification by column chromatography led to 4-fluoro-2-thiophenecarbonitrile (6) without any traces of 2-thiophenecarbonitrile, a byproduct observed by El Kässi et al. The absence of traces of 2-thiophenecarbonitrile is of paramount importance for the next step that leads to the diketopyrrolopyrrole core with fluorinated flanking thiophene (fDT-DPP) (Scheme 3). Then, 3,6-(4-fluorothiophen-2-yl)pyrrole[3,4-c]pyrrole-1,4-dione (7) was synthesized in one step by consecutive condensation of succinate ester with (6) in the presence of sodium alkoxide in 75%. In addition to the modification of the electronic properties of the DPP core, the fluorine atom installed on the 4-position on the flanking thiophene prevents β-branching and activates the C–H bond in α-position for DHAP. Allylation with either 1-bromodecane or 1-bromododecane led to M5 and M6 in 40% and 43% yields, respectively.

3.3. Synthesis and Characterization of Polymers. Fluorinated dithienyl-DPP-based copolymers were prepared by direct (hetero)arylation polymerization following guidelines found in our previous reports investigating reactivity and selectivity (Scheme 1). Non-fluorinated P1 was already reported in the literature. In all cases, the polymerization reaction was stopped upon gelation of the reaction mixture. After precipitation in methanol, the polymers were purified by successive Soxhlet extractions. We found that the fluorine atom installed on the flanking thiophenes of the DPP moiety led to shorter polymerization times and higher molecular weights. As shown in Table 1, all the fluorinated copolymers have higher molecular weights compared to their non-fluorinated analogues. As an example, P3 (Scheme 1) exhibits a number-average molecular weight of 51 3.7 90 15 min 5.68 639/702 639/702 1.65 420 66 16 2.4 93 20 h 5.46 622/655 630/689 1.68 420 Table 1. Properties of Polymers

<table>
<thead>
<tr>
<th>entry</th>
<th>M (kg mol⁻¹)</th>
<th>D</th>
<th>yield (%)</th>
<th>reaction time</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>λmax,abs (nm)</th>
<th>E β (eV)</th>
<th>TGA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>16</td>
<td>2.4</td>
<td>93</td>
<td>20 h</td>
<td>−5.45</td>
<td>−4.14</td>
<td>820/920</td>
<td>846/927</td>
<td>1.17</td>
</tr>
<tr>
<td>P2</td>
<td>22</td>
<td>3.0</td>
<td>73</td>
<td>20 h</td>
<td>−5.71</td>
<td>−4.04</td>
<td>887/962</td>
<td>859/967</td>
<td>1.15</td>
</tr>
<tr>
<td>P3</td>
<td>44</td>
<td>3.0</td>
<td>91</td>
<td>16 h</td>
<td>−5.46</td>
<td>−3.82</td>
<td>622/655</td>
<td>630/689</td>
<td>1.68</td>
</tr>
<tr>
<td>P4</td>
<td>51</td>
<td>3.7</td>
<td>90</td>
<td>15 min</td>
<td>−5.68</td>
<td>−3.97</td>
<td>639/702</td>
<td>639/702</td>
<td>1.65</td>
</tr>
<tr>
<td>P5</td>
<td>125</td>
<td>3.0</td>
<td>85</td>
<td>30 min</td>
<td>−5.68</td>
<td>−3.97</td>
<td>639/702</td>
<td>639/702</td>
<td>1.65</td>
</tr>
</tbody>
</table>
molecular weight of 44 kg mol\(^{-1}\) after 16 h of reaction, whereas, using the same polymerization conditions, P4 reached a number-average molecular weight of 81 kg mol\(^{-1}\) after only 15 min of reaction. Recently, we have shown that the use of bulky phosphine-based ligand can increase the selectivity of the DHAP while decreasing the unwanted homocoupling.\(^{70}\) P5 was synthesized using tris(2-cyclohexyloxyphenyl)phosphine (Bur-APhos) instead of tris(2-methoxyphenyl)phosphine, and a number-average molecular weight up to 125 kg mol\(^{-1}\) was obtained after 30 min. This shorter polymerization time observed for P4 and P5 compared to P3 (see Table 1) can be attributed to the strong electron-withdrawing effect of the fluorine atom on the \(\alpha\) C–H bond. The results obtained are in good agreement with the DFT calculations. Fluorinated dithienyl-DPP (DDT-DPP) pseudo-homopolymer (P2) was synthesized for OFETs applications while fluorinated-DPP/carbazole copolymers (P3–P5) were synthesized for PSCs applications.

Thermal properties were evaluated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). All polymers exhibit good thermal stability with 5% weight loss at temperature higher than 400 °C (see Table 1) while DSC traces did not revealed any thermal transition. NMR spectroscopy was useless to identify any \(\beta\)-branching or homocoupling within the conjugated backbone due to broad and featureless signals. Although a well-resolved \(^1\)H NMR spectrum was obtained for P3 (TCE at 100 °C, see Supporting Information), the fluorinated analogues P4 and P5 exhibit strong aggregation and were barely soluble even in TCE at 100 °C.

As reported in the literature, the solid-state UV–vis–NIR absorption spectrum of P1 shows a maximum of absorption at 927 nm with a shoulder at 846 nm and an optical bandgap of 1.17 eV.\(^{66}\) For P2 (fluorinated analogue of P1), bathochromic shifts were observed for each the maximum of absorption (40 nm) and the shoulder (13 nm) (see Figure S40 in the Supporting Information). The optical bandgap taken from then onset of the absorption spectrum is 1.15 eV. The effect of the fluorine atom on the optical properties was also observed for P3–P5 polymers in dilute chloroform solution (Figure 2). Indeed, a strong bathochromic shift (47 nm) of the maximum of absorption was observed for P4 and P5 (702 nm) compared to that of P3 (655 nm). However, in the solid state, a bathochromic shift of 34 nm was observed for P3 while no such behavior was found for P4 and P5, suggesting strong aggregation in solution. Cyclic voltammetry analyses were performed to gauge the influence of the fluorine atom on the electronic properties (see Figures S1 and S2). We observed a decrease of both HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels (see Table 1).\(^{28}\) For example, the HOMO of P4 and P5 was stabilized by 0.22 eV compared to P3 while the LUMO decreased from –3.82 eV (P3) to –3.97 eV (P4, P5). X-ray diffraction analyses (powder) were also performed (see Figures S37–S39). Typical \(d\)-spacing and lamellar distances for conjugated polymers were found for each DDT-DPP copolymer.

3.4. OFETs. To evaluate the semiconducting properties of P2, we prepared bottom-gate/bottom-contact (BGBC) OFETs devices. All spin-coating processes were carried out under nitrogen, and the active channel layers were annealed at different temperatures for 20 min under nitrogen prior to measurements. OFET characteristics of the devices were measured under nitrogen conditions, and the field-effect mobility was extracted from the saturation regimes. P2 displayed ambipolar properties, and the device performance data are outlined in Table 2 and compared with previously reported P1.\(^{66}\) Figure 3 shows the transfer and output characteristics of the BGBC devices based on P2. The output characteristics follow a typical trend exhibited by ambipolar devices where a superlinear increase in current is observed at low \(V_{GS}\) and high \(V_{DS}\), which is due to the injection of the opposite charge carrier, and superposed standard saturation behavior with increasing \(V_{GS}\) for the dominant charge carrier. From the transfer characteristics, we observe V-shaped \(I_{DS}\) patterns. As presented in Table 2, P2 exhibited high mobilities with the maxima \(\mu_h\) and \(\mu_e\) of 0.80 cm\(^2\) V\(^{-1}\) s\(^{-1}\) and 0.51 cm\(^2\) V\(^{-1}\) s\(^{-1}\), respectively. The hole and electron mobilities are quite balanced with an average \(\mu_e/\mu_h\) of 0.68. In all cases, forward and backward scans in the transfer and output curves exhibited pronounced hysteresis of \(I_{DS}\), which is frequently observed for OFETs due to trapping of the charge carriers in the gate dielectrics, at the interface of the active channel layer and dielectric, or in the active channel layer.

Table 2. OFETs Performances

<table>
<thead>
<tr>
<th></th>
<th>p-channel</th>
<th>n-channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_h) (cm(^2) V(^{-1}) s(^{-1}))</td>
<td>(I_{on}/I_{off})</td>
<td>(\mu_e) (cm(^2) V(^{-1}) s(^{-1}))</td>
</tr>
<tr>
<td>P1</td>
<td>0.22 (0.73)</td>
<td>10(^3)</td>
</tr>
<tr>
<td>P2</td>
<td>0.80 (0.73)</td>
<td>10(^3)</td>
</tr>
</tbody>
</table>

\(^{a}\)Maximum mobilities measured under nitrogen in saturated regime. The average values are in parentheses. \(^{b}\)Current on/off ratio. \(^{c}\)Bottom gate bottom contact configuration (BGBC), where the P2 films were annealed at 100 °C for 20 min in nitrogen. \(^{d}\)Top gate bottom contact configuration (TGBK).
respectively) compared to the non-fluorinated P3 polymer \((5.0 \pm 1.0) \times 10^{-5} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\). These moderate mobility values are sufficient to consider these polymers, and especially the fluorinated derivatives, as interesting electron-donor candidates in BHJ solar cells. P3–P5 polymers have been characterized in blends with [6,6]-phenyl C71-butyric acid methyl ester (PC70BM) as electron-acceptor using an inverted device structure. The current density–voltage \((J–V)\) characteristics of the solar cells measured under simulated AM 1.5G irradiation (with intensity of 100 mW cm\(^{-2}\)) are shown in Figure 4. The PSC parameters are summarized in Table 3. For both fluorinated polymers (P4 and P5), using DIO as additive, the open-circuit voltage \((V_{oc})\) is slightly higher (by roughly 50 mV) than for the non-fluorinated polymers, in good agreement with the experimental HOMO energy levels reported in Table 1. The PCEs for fluorinated polymers are higher than those obtained for the non-fluorinated analogue. The best results are obtained for the high molecular weight polymer P5, with significantly larger short-circuit current densities \((J_{sc})\) and fill factors (FF). The average external quantum efficiencies \((\text{EQE})\), measured on the best-performing devices (Figure 5), follow the same trend. The \(J_{sc}\) values estimated from the EQE spectra are in line with those measured under AM1.5 illumination. The noticeable difference in FF between non-fluorinated and fluorinated polymers correlates well with the higher out-of-plane mobility of P4 and P5, which allows improved charge collection. Interestingly, the polymer molecular weight turns out to have a dramatic impact on the solar cell performances despite its minor influence on the SCLC mobility. The increase in PCE is mostly due to the higher \(J_{sc}\) of P5 based devices and to a slightly larger FF. This suggests that the molecular weight affects mostly the polymer/fullerene interface, at which charge generation occurs. The further PCE enhancement observed upon using a different additive (DPE versus DIO) supports this conclusion as the latter is expected to influence principally the blend morphology. The final maximum PCE of 7.47% is among the highest values reported so far for conjugated polymers prepared by direct heteroarylation polymerization.

4. CONCLUSION

In this study, we have developed an efficient synthetic procedure for the synthesis of new fluorinated dithienyl-DPP (fDT-DPP) monomers and copolymers. Two classes of conjugated copolymers have been prepared by direct heteroarylation polymerization (DHAP) and tested in OFETs and PSCs. We have shown that fluorinated DPP pseudohomopolymer exhibits an ambipolar behavior in OFETs while fDT-DPP/carbazole copolymers show higher PCE than their non-fluorinated analogue. On the basis of these first examples, it is obvious that this new fDT-DPP moiety will lead to the development of new and high-performing materials for organic electronics devices.

Figure 3. Transfer (left) and output (right) characteristics of a typical BGBC OFET device with P2 as the channel semiconductor, which show ambipolar behavior. The P2 film was annealed at 100 °C for 20 min in nitrogen.

Figure 4. \(J–V\) characteristics measured in the dark (closed symbols) and under standard (AM1.5G 100 mW/cm\(^2\)) conditions (open symbols) for P3 (squares), P4 (triangles), P5 with DIO (circles), and P5 with DPE (diamonds).

Table 3. Best Photovoltaic Parameters Measured with Different Polymers

<table>
<thead>
<tr>
<th>polymer</th>
<th>additive</th>
<th>(V_{oc}) (mV)</th>
<th>(J_{sc}) (mA/cm(^2))</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>DIO</td>
<td>807</td>
<td>8.63</td>
<td>44.1</td>
<td>3.07 (3.0)</td>
</tr>
<tr>
<td>P4</td>
<td>DIO</td>
<td>854</td>
<td>8.57</td>
<td>57.7</td>
<td>4.23 (4.1)</td>
</tr>
<tr>
<td>P5</td>
<td>DIO</td>
<td>845</td>
<td>11.4</td>
<td>65.9</td>
<td>6.37 (6.2)</td>
</tr>
<tr>
<td>P5</td>
<td>DPE</td>
<td>828</td>
<td>13.6</td>
<td>65.8</td>
<td>7.47 (7.3)</td>
</tr>
</tbody>
</table>

Values in parentheses are average PCE values.
ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.7b01198.

Figures S1−S41 (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: Mario.Leclerc@chm.ulaval.ca (M.L.).

ORCID
Yuning Li: 0000-0003-3679-8133
Mario Leclerc: 0000-0003-2458-9633

Author Contributions
T. Bura and S. Beaupré contributed equally.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), Université Laval (APOGÉE, Sentinelle Nord), the Canadian Institute for Advanced Research (CIFAR), and the European Fund for Regional Development (FEDER) within the framework of the program INTERREG V Rhin-Supérieur and under the project no. 3.10 (PROOF) for their support. Compute Canada and Calcul Québec are also thanked for access to computational facilities. C. Roy is acknowledged for his help in the synthesis of some synthetic precursors.

REFERENCES

(2) Etxebarria, I.; Ajuria, J.; Pacios, R. Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Org. Electron. 2015, 19, 34−60.

